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Observational data obtained by the Voyager space probes to the giant
planets Jupiter, Saturn, Uranus, and Neptune have provided valuable

information, which is used to refine our picture of the nature of the

interiors of these planets. Major results from the Voyager missions

include observations of substantial magnetic fields and improved models

of internal density distributions. Our goal is to obtain equation-of-state

(EOS) and electrical conductivity data for planetary gases (H2 and He) and

the "ices" (H20, CH4, and NH3, and their mixtures), which are considered to

be the major constituents of the giant planets. These data are needed to
test theoretical databases used to construct models of the chemical

composition of planetary interiors, models which are consistent with

observables such as mass, diameter, gravitational moments, rotation rate

and magnetic field. The 100 GPa (1 Mbar) pressures and several 1000 K

temperatures in the giant planets can be achieved in the laboratory by the
shock compression of liquid specimens.

Jupiter and Saturn are thought to be composed primarily of hydrogen
and helium.1 Figure 1 shows their calculated planetary isentropes. 2

Figure 1 also illustrates the relevance of laboratory shock-compression

experiments to the giant planets. The single-shock compression curve or

Hugoniot of liquid hydrogen intersects the planetary isentropes near 20

GPa and 3000 to 4000 K. Even higher pressures and densities in the

laboratory are achieved by reflecting a first shock in liquid hydrogen off a
metal anvil, thereby causing a second shock wave. The second-shock

states, or the double-shock Hugoniot in Fig. 1, achieve states close to the

planetary isentropes at still higher pressures and temperatures.

Uranus and Neptune are thought to consist of an outer layer

primarily of hydrogen and helium and an inner layer rich in the planetary
"ices." Density distributions have been calculated for Uranus1,3, 4 from the

gravitational movements derived from the observed precessions of its

elliptical rings, and from its mass, rad!us, and rotational rate. Some

models show a dense "rocky" core, although the sensitivity of the external

gravitational field is weak to the relatively small mass at such great

depth. The H2-rich envelope is at radii greater than about 0.75 Ru, where

RU is the outer radius of Uranus. The region at radii less than about 0.75

RU is the ice-rich region. The magnetic fields of these planets are

produced by dynamos generated by the convection of high-temperature
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conducting fluids in the outer -,30% of the planetary radii. 5 Pressures

extend up toward the 100 GPa range and several 1000 K in these regions.

We measured previously single- and double-shock EOS data for

"synthetic Uranus," an H-rich liquid with an H:O composition ratio of 3.5:1
and abundance ratios close to cosmological for O:C(7:4) and O:N(7:1).6 It is

a solution of water, ammonia, and isopropanol (C3H80) with mole

fractions of 0.71, 0.14, and 0.15, respectively. Our four double-shock

points are in the range 98 - 220 GPa. The maximum density achieved is 3

g/cm 3, which probes a depth of about 0.5 RU. The region for radii >0.5 RU

is the region probed most sensitively by gravitational moments. Our
double-shock EOS points are in good agreement with the planetary

isentrope. 1 This agreement suggests that the outer core of Uranus might

be composed primarily of the ices. However, chemical compositions

cannot be derived uniquely from laboratory data alone. In the last year we

performed a double-shock temperature measurement of synthetic Uranus
of 4000 K at about 100 GPa. This measurement is important because

theoretical temperatures of "ice" are relatively uncertain.

We recently measured four electrical conductivity data points of

shocked liquid hydrogen. These data are important for understanding the

magnetic fields of all the giant planets. In particular, a scaling
relationship for the conductivty is needed at relevant densities and

temperatures for dynamo or kinematic calculations of planetary magnetic

fields. These data also provide a measure of the narrowing of the

electronic bandgap of molecular H2 with density as it approaches

metallization, a subject of fundamental scientific interest. Our

experiments are in the ranges 10-20 GPa, 3000-5000 K, and volumes near

8 cm3/mol. Although our conductivity experiments are not yet complete,

preliminary analysis indicates that the electrical conductivity (_ scales as

o = Oo exp(-Eg/kT), (1)

where Eg is the bandgap and T is shock temperature. We used calculated
values of shock temperatures. 7 Our preliminary bandgap is in agreement
with recent theoretical predictions8, 9 at the molar volume of our

experiments. The gap we observe is substantially higher than previous

theoretical predictions.lO The pre-exponential factor (_o is also

substantially larger than predicted. 5

Our measurement of the bandgap of hydrogen is the first direct one

at high pressures, to our knowledge. This measurement is made possible
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by shock heating, which thermally activates electronic charge carriers
and induces electrical conductivity. Because of the large bandgap

compared to thermal energy, negligible internal energy is absorbed in

electronic excitation and the equation of state of molecular hydrogen is

unaffected by electronic excitation at the conditions of the experiments.
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Figure 1. Isentropes of Jupiter and Saturn compared with the Hugoniot

and double-shock Hugoniot of H2, plotted as temperature

versus pressure (after Ref. 2; 1Mbar=100 GPa) .
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